Капицы скачок температуры - определение. Что такое Капицы скачок температуры
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Капицы скачок температуры - определение

ВИД НАСЕКОМЫХ
Roeseliana roeselii; Зелёный скачок; Скачок зелёный; Metrioptera roeselii; Зеленый скачок
  • Juncus effusus}}, одно из излюбленных растений самок скачков Резеля для откладывания яиц
  • Самец [[кобчик]]а с пойманным кузнечиком
  • стридуляционная]] жилка, длина [[масштаб]]ной линейки — 3 мм)
  • Личинка самки скачка Резеля
  • Личинка самки последнего, шестого возраста, видны зачатки надкрыльев и крыльев и уже вполне развитый яйцеклад
  • Самка после спаривания, виден сперматофор (белого цвета) на конце брюшка между отогнутой генитальной пластинкой и яйцекладом
  • Спаривающаяся пара скачков Резеля
  • Яйцеклад самки скачка Резеля (вверху слева — церки)
  • Высокотравный луг — типичное место обитания скачка Резеля
Найдено результатов: 36
Капицы скачок температуры      

открытое П. Л. Капицей (См. Капица) (1941) явление в сверхтекучем жидком гелии, состоящее в том, что при передаче теплоты от твёрдого тела к жидкому гелию на границе раздела возникает разность температур. В дальнейшем было установлено, что К. с. т. - общее физическое явление при низких температурах: он возникает на границе раздела любых сред при наличии теплового потока из одной среды в другую. Скачок температуры

где Q - плотность теплового потока, Т - температура, коэффициент А зависит от упругости находящихся в контакте веществ.

Экспериментально установлено, что на границе свинец - сверхтекучий гелий при температуре Т = 1,3 К и плотности стационарного теплового потока Q = 10 втlм2 скачок температуры ΔТ = 0,011 К. Т. о., R = 1,1.10-3 м2. град/вт, а коэффициент А = 2,4.10-3 м2. град4/вт. Для др. металлов (при тех же условиях и одинаковой обработке поверхности) коэффициент R имеет близкие значения.

Величину R, а также само открытое Капицей явление в научной литературе часто называют тепловым сопротивлением границы или пристенным тепловым сопротивлением.

Теоретически показано (И. М. Халатников, 1952), что при низких температурах теплообмен между жидкостью и твёрдым телом обусловлен испусканием и поглощением квантов звука (Фононов) на границе раздела этих сред. Из-за сильного различия акустических сопротивлений твёрдого тела и жидкости (разница в тысячу раз, см. Сопротивление акустическое) коэффициент прохождения звука из одной среды в другую ничтожно мал: фононы более нагретого твёрдого тела практически полностью отражаются от границы. В результате этого между твёрдым телом и жидкостью возникает конечная разность температур - К. с. т., он является главным препятствием для охлаждения тел до сверхнизких температур.

Лит.: Капица П. Л., Исследование механизма теплопередачи в гелии II. "Журнал экспериментальной и теоретической физики", 1941, т. 11, в. 1, с. 1; Халатников И. М., Теплообмен между твердым телом и гелием II, там же, 1952, т. 22, в. 6, с. 687.

К. Н. Зиновьева.

Единицы измерения температуры         
Единица измерения температуры; Градус (температурный); Температурный градус
Существует несколько различных единиц измерения температуры. Они делятся на относительные (градус Цельсия, градус Фаренгейта…) и абсолютные (Кельвин, градус Ранкина…).
Большой скачок         
  • Мао Цзэдун на борту самолёта, 1957 год
  • Сельский храм в пров. [[Хубэй]], на стене которого виден лозунг: «Мао Цзэдун — спаситель китайского народа», видимо, относящийся к периоду Большого скачка
  • Мемориал в городе]] [[Цзинань]] провинции [[Шаньдун]], где 9 августа 1958 года Мао Цзэдун фактически дал старт кампании по созданию народных коммун
  • Пропагандистский плакат «Да здравствует руководящая линия! Да здравствует Большой скачок! Да здравствуют народные коммуны!»
  • Лозунг, пропагандирующий малую металлургию. На знамени иероглиф «[[сталь]]». Текст: «Сталь — основа скачка во всех направлениях»
ЭКОНОМИКО-ПОЛИТИЧЕСКАЯ ПРОГРАММА МАО ЦЗЭДУНА
Большой Скачок
Большо́й скачо́к () — экономическая и политическая кампания в Китае с 1958 по 1960 год, нацеленная на укрепление индустриальной базы и резкий подъём экономики страны и имевшая трагические последствия для китайского народа. В это время Китай представлял собой на 90 % аграрную страну, которой была остро необходима модернизация.
НИЗКИЕ ТЕМПЕРАТУРЫ         
  • Рефрижератор растворения
РАЗДЕЛ ФИЗИКИ
Низкая температура; Низкие температуры
(криогенные температуры) , в физике и криогенной технике диапазон температур ниже 120 К.
ФИЗИКА НИЗКИХ ТЕМПЕРАТУР         
  • Рефрижератор растворения
РАЗДЕЛ ФИЗИКИ
Низкая температура; Низкие температуры
раздел физики, изучающий явления, которые наблюдаются при температурах ниже температуры перехода кислорода в жидкое состояние (?182,97. С, 90,19 К). Большинство обычных веществ с понижением температуры сначала переходит из газообразного состояния в жидкое, а затем из жидкого - в твердое. Поэтому получение, поддержание и изучение низких (криогенных) температур связано в первую очередь с ожижением газов и замораживанием жидкостей. В низкотемпературных исследованиях обычно пользуются ваннами из ожиженных газов.
Историческая справка. Первым систематически исследовать низкотемпературные проблемы и возможности ожижения газов начал в 1823 М.Фарадей. Он показал, что многие газы, например хлор, диоксид серы и аммиак, могут быть ожижены и при этом достигаются низкие температуры (до ?110. С). Но многие другие газы, в частности кислород, азот, водород, углекислый газ и метан, не поддавались ожижению его методами даже при крайне высоких давлениях, за что позднее получили название постоянных газов. И только в 1877 Л.Кальете (Франция) и Р.Пикте (Швейцария) сообщили о том, что им удалось впервые ожижить один из постоянных газов - кислород. Теми методами, которыми действовали эти первые исследователи, можно было получить лишь легкий туман из жидкого кислорода, а таких количеств было недостаточно для экспериментов. Тем не менее их трудами было положено начало физике низких температур и показано, что постоянные газы не следует рассматривать как неожижаемые. К 1887 К.Ольшевскому и З.Врублевскому в Краковском университете и Дж.Дьюару в Лондонском королевском институте удалось получить в жидком виде многие постоянные газы, в том числе кислород, азот и моноксид углерода, в таких количествах, которые позволяли провести точные измерения и установить их низкотемпературные свойства. В 1894 Г.Камерлинг-Оннес в Лейденском университете (Нидерланды) построил установку для ожижения воздуха. Она тоже работала по каскадной схеме, которой ранее пользовались Пикте и Ольшевский с Врублевским. Криогенная лаборатория, которой заведовал Камерлинг-Оннес, позднее стала выдающимся центром физики низких температур. В 1895 У.Гемпсон (Англия) и К. фон Линде (Германия) независимо друг от друга разработали новый метод ожижения воздуха, а затем более совершенные методы ожижения воздуха были найдены Ж.Клодом во Франции и К.Гейландтом в Германии. Этими работами был заложен фундамент промышленности разделения газов, в которой результаты низкотемпературных исследований нашли самое важное и самое широкое техническое применение.
Впервые ожижить водород удалось в 1888 Дж.Дьюару - тем же методом, которым ранее Гемпсон ожижал воздух. Таким образом, к концу 19 в. были ожижены все постоянные газы, кроме гелия, и завершены измерения их точек кипения и других параметров. Ожижение гелия с массой 4 (гелия-4) осуществил Камерлинг-Оннес в 1908 методом, почти совпадавшим с методом ожижения воздуха Линде. Этим было не только установлено существование жидкой фазы для всех газов, но и открыта новая важная область низких температур. Позднее гелий был ожижен и другими методами, в частности разработанными в 1930 Ф.Саймоном, работавшим в Германии, и в 1934 П.Л.Капицей в Кембридже (Англия). Метод Капицы усовершенствовал в 1946 С.Коллинз (США).
Гелий-3, получаемый как дочерний продукт распада радиоактивного трития, впервые удалось ожижить в 1948 в Лос-Аламосской научной лаборатории (США). Этот менее распространенный изотоп гелия дал возможность работать с жидкими ваннами, температура которых всего лишь на 0,25 К выше абсолютного нуля.
См. также:
Физика низких температур         
  • Рефрижератор растворения
РАЗДЕЛ ФИЗИКИ
Низкая температура; Низкие температуры
Физика низких температур — раздел физики, занимающийся изучением физических свойств систем, находящихся при низких температурах. В частности, этот раздел рассматривает такие явления, как сверхпроводимость и сверхтекучесть.
Низкие температуры         
  • Рефрижератор растворения
РАЗДЕЛ ФИЗИКИ
Низкая температура; Низкие температуры

криогенные температуры, обычно температуры, лежащие ниже точки кипения жидкого воздуха (около 80 К). Такие температуры принято отсчитывать от абсолютного нуля (См. Абсолютный нуль) температуры (-273,15 °С, или 0 К) и выражать в кельвинах (К). На 13-м конгрессе Международного института холода в 1971 была принята рекомендация, согласно которой криогенными температурами следует называть температуры ниже 120 К. Однако эта рекомендация ещё не получила широкого распространения; в данной статье рассматриваются Н. т. с верхней границей Низкие температуры 80 К.

Получение низких температур. Для получения и поддержания Н. т. обычно используют сжиженные газы. В сосуде Дьюара, содержащем сжиженный газ, испаряющийся под атмосферным давлением, достаточно хорошо поддерживается постоянная температура нормального кипения Tn хладоагента. Практически применяют следующие хладоагенты (сжиженные газы): воздух (TN = 80 К), азот (Tn = 77,4 К), неон (TN = 27,1 К), водород (TN = 20,4 К), гелий (TN = 4,2 К). Для получения жидких газов служат специальные установки - ожижители, в которых сильно сжатый газ при расширении до обычного давления охлаждается и конденсируется (см. Сжижение газов, Джоуля - Томсона эффект). Сжиженные газы могут сохраняться достаточно долго в Дьюара сосудах (См. Дьюара сосуды) и Криостатах с хорошей теплоизоляцией (порошковые и пористые теплоизоляторы, например пенопласты).

Откачивая испаряющийся газ из герметизированного сосуда, можно уменьшать давление над жидкостью и тем самым понижать температуру её кипения. Т. о., изменением давления паров над кипящей жидкостью можно регулировать ёё температуру. Естественная или принудительная конвекция и хорошая теплопроводность хладоагента обеспечивают при этом однородность температуры во всём объёме жидкости. Таким путём удаётся перекрыть широкий диапазон температур: от 77 К до 63 К с помощью жидкого азота, от 27 К до 24 К - жидкого неона, от 20 К до 14 К - жидкого водорода, от 4,2 К до 1 К - жидкого гелия. Методом откачки нельзя получить температуру ниже тройной точки (См. Тройная точка) хладоагента. При более низких температурах вещество затвердевает и теряет свои качества хладоагента. Промежуточные температуры, лежащие между указанными выше интервалами, достигаются в специальных криостатах. Охлаждаемый объект теплоизолируют от хладоагента, например, помещают его внутрь вакуумной камеры, погруженной в сжиженный газ. При небольшом контролируемом выделении теплоты в камере (в ней имеется электрический нагреватель) температура исследуемого объекта повышается по сравнению с температурой кипения хладоагента и может поддерживаться с высокой стабильностью на требуемом уровне. В др. способе получения промежуточных температур охлаждаемый образец помещают над поверхностью испаряющегося хладоагента и регулируют скорость испарения жидкости нагревателем. Отвод теплоты от исследуемого объекта здесь осуществляет поток откачиваемого газа. Применяется также метод охлаждения, при котором холодный газ, получаемый при испарении хладоагента, прогоняется через теплообменник (обычно медная трубка, свитая в спираль, или блок пористой меди), находящийся в тепловом контакте с охлаждаемым объектом.

Гелий при атмосферном давлении остаётся жидким вплоть до абсолютного нуля температуры. Однако при откачке паров жидкого 4He обычно не удаётся получить температуру существенно ниже 1 К даже с помощью очень мощных насосов (этому мешают чрезвычайно малая упругость насыщенных паров 4He и его Сверхтекучесть). Поэтому для достижения температур порядка десятых долей Кельвина употребляют изотоп гелия 3He (Tn = 3,2 К), который не является сверхтекучим при данных температурах. Откачивая испаряющийся 3He, удаётся понизить температуру жидкости до 0,3 К. Область температур ниже 0,3 К принято называть сверхнизкими температурами. Для получения таких температур применяются различные методы. Методом адиабатического размагничивания (магнитного охлаждения (См. Магнитное охлаждение)) с применением парамагнитной соли в качестве охлаждающей системы удаётся достичь Н. т. Низкие температуры 10-3 К. Тем же методом с использованием парамагнетизма атомных ядер были достигнуты Н. т. Низкие температуры 10-6 К. Принципиальную проблему в методе адиабатического размагничивания (как, впрочем, и в др. методах получения Н. т.) составляет осуществление хорошего теплового контакта между объектом, который охлаждают, и охлаждающей системой. Особенно это трудно достижимо в случае системы атомных ядер. Совокупность ядер атомов можно охладить до сверхнизких температур, но добиться такой же степени охлаждения вещества, содержащего эти ядра, не удаётся.

Для получения температур порядка нескольких мК теперь широко пользуются более удобным методом - растворением жидкого 3He в жидком 4He. Применяемая для этой цели установка называется рефрижератором растворения (рис. 1). Действие рефрижераторов растворения основано на том, что 3He сохраняет конечную растворимость (около 6\%) в жидком 4He вплоть до абсолютного нуля температуры. Поэтому при соприкосновении почти чистого жидкого 3He с разбавленным раствором 3He в 4He атомы 3He будут переходить в раствор. При этом поглощается теплота растворения, и температура раствора понижается. Растворение осуществляется в одном месте прибора (в камере растворения), а удаление атомов 3He из раствора путём откачки - в другом (в камере испарения). При непрерывной циркуляции 3He, осуществляемой системой насосов и теплообменников, можно поддерживать в камере растворения температуру Низкие температуры 10-30 мК. неограниченно долго. Холодопроизводительность таких рефрижераторов определяется производительностью насосов, а предельно достижимая Н. т. (несколько мК) - эффективностью теплообменников и устранением паразитного притока теплоты. Гелий 3He можно охладить ещё сильнее, используя Померанчука эффект. Жидкий 3He затвердевает при давлениях более 30 бар. В области температур ниже 0,3 К увеличение давления (в пределе до 34 бар) сопровождается поглощением теплоты и понижением температуры равновесной смеси жидкой и твёрдой фаз (затвердевание идёт с поглощением теплоты). Таким путём были достигнуты температуры Низкие температуры1-2 мК.

Измерение низких температур. Первичным термометрическим прибором для измерения термодинамической температуры вплоть до 1 К служит Газовый термометр. Др. вариантами первичного термометра являются акустический и шумовой термометры, действие которых основано на связи термодинамической температуры соответственно со значением скорости звука в газе и интенсивностью тепловых флуктуаций напряжения в электрической цепи. Первичные прецезионные термометры используются в основном для определения температур легко воспроизводимых фазовых равновесий в однокомпонентных системах (т. н. реперных точек), которые служат опорными температурными точками Международной практической температурной шкалы (См. Международная практическая температурная шкала) (МПТШ-68). В области Н. т. такими реперными точками являются: тройная точка равновесного водорода (13, 81 К), точка равновесия между жидкой и газообразной фазами равновесного водорода при давлении 25/76 нормальной атмосферы (См. Атмосфера) (17,042 К), точка кипения TN равновесного водорода (20,28 К), TN неона (27,102 К), тройная точка кислорода (54,361 К), TN кислорода (90,188 К).

Для воспроизведения любого значения температуры от 630,74 °С до 13,81 К по МПТШ-68 с точностью Низкие температуры 0,001 К служит платиновый Термометр сопротивления. В диапазоне Н. т. температура по МПТШ-68 отличается от истинного термодинамического значения не более чем на 0,01 К. МПТШ-68, пока не продлена ниже 13,8 К, ввиду отсутствия в этой области Н. т. вторичного термометра, не уступающего по чувствительности, точности и воспроизводимости показаний платиновому термометру сопротивления при более высоких температурах. В диапазоне 0,3-5,2 К низкотемпературная термометрия основана на зависимости давления насыщенных паров ps гелия от температуры Т, устанавливаемой с помощью газового термометра. Эта зависимость была принята в качестве международной температурной шкалы в области 1,5-5,2 К (шкала 4He, 1958) и 0,3-3,3 К (шкала 3He, 1962). Зависимость ps (T) в этих температурных диапазонах не может быть представлена простой аналитической формулой и поэтому табулируется; табличные данные обеспечивают точность определения температуры до тысячной доли Кельвина.

В области Н. т. для целей практической термометрии применяют главным образом термометры сопротивления (до 20 К - медный; в области водородных и гелиевых температур - вплоть до 1 мК - угольные, сопротивление которых возрастает при понижении температуры). Применяют также термометры сопротивления из чистого германия. Высокая стабильность и достаточная чувствительность делают их удобным инструментом измерения температуры ниже 100 К.

Существует ряд др. чувствительных к изменениям температуры устройств, которые могут быть использованы в качестве вторичных термометров для измерения Н. т.: термопары (См. Термопара), Термисторы, полупроводниковые диоды (См. Полупроводниковый диод), датчики из сверхпроводящих сплавов (в области гелиевых и водородных температур).

Ниже 1 К газовым термометром пользоваться практически нельзя. Для определения термодинамической температуры в этой области используют магнитные и ядерные методы. В магнитной термометрии (См. Магнитная термометрия) пользуются понятием магнитной температуры Т*, которую определяют из измерений магнитной восприимчивости (См. Магнитная восприимчивость) χ парамагнитной соли. Согласно Кюри закону, при достаточно высоких температурах χ Низкие температуры 1/T*. Для многих солей закон Кюри справедлив и при гелиевых температурах. Экстраполируя эту закономерность в область сверхнизких температур, определяют магнитную температуру как величину, обратно пропорциональную восприимчивости. Для получения точных результатов необходимо учитывать различные побочные факторы: анизотропию восприимчивости, геометрическую форму образца и др. Область температур, в которой магнитная температурная шкала достаточно близка к термодинамической, зависит от конкретной соли. Наиболее широко для измерения сверхнизких температур до 6 мК применяют церий-магниевый нитрат, для которого расхождение шкал при указанной температуре меньше 0,1 мК. В основе ядерных методов измерения Н. т. лежит принцип квантовой статистической физики, согласно которому равновесная заселенность дискретных уровней энергии (См. Уровни энергии) системы зависит от температуры. В одном из таких методов измеряется интенсивность линии ядерного магнитного резонанса (См. Ядерный магнитный резонанс), определяемая разностью заселённости уровней ядерных магнитных моментов в магнитном поле. В др. методе определяется зависящее от температуры отношение интенсивностей компонент, на которые расщепляется линия резонансного гамма-излучения (Мёссбауэра эффект) во внутреннем магнитном поле ферромагнетика.

Аналогом термометрии по давлению насыщенных паров в области сверхнизких температур является измерение температуры в диапазоне 30-100 мК по осмотическому давлению (См. Осмотическое давление) 3He в смеси 3He - 4He. Абсолютная точность измерений - около 2 мК при чувствительности осмотического термометра 0,01 мК.

Физика низких температур. Применение Н. т. сыграло решающую роль в изучении конденсированного состояния. Особенно много новых и принципиальных фактов и закономерностей было открыто при изучении свойств различных веществ при гелиевых температурах. Это привело к развитию специального раздела физики - физики Н. т. При понижении температуры в свойствах веществ начинают проявляться особенности, связанные с наличием взаимодействий, которые при обычных температурах подавляются сильным тепловым движением атомов. Новые закономерности, обнаруженные при Н. т., могут быть последовательно объяснены только на основе квантовой механики (См. Квантовая механика). В частности, принцип неопределённости квантовой механики и вытекающее из него существование нулевых колебаний при абсолютном нуле температуры объясняют тот факт, что гелий остаётся в жидком состоянии вплоть до 0 К (см. Квантовая жидкость). Наиболее ярко квантовые закономерности проявляются при Н. т. в явлениях сверхтекучести (См. Сверхтекучесть) и сверхпроводимости (См. Сверхпроводимость). Изучение этих явлений составляет важную часть физики Н. т. С 60-х гг. 20 в. открыт ряд интересных эффектов, в которых особое значение имеет пространственная когерентность волновых функций на макроскопических расстояниях (сверхпроводящее туннелирование, Джозефсона эффект). Большое значение имеет изучение свойств жидкого 3He, который представляет собой пример нейтральной квантовой ферми-жидкости. Как теперь выяснено, при температурах около 3 мК и давлении около 34 бар 3He претерпевает фазовое превращение, сопровождающееся значительным уменьшением вязкости (переходит в сверхтекучее состояние).

Развитие физики Н. т. в значительной степени способствовало созданию квантовой теории твёрдого тела (См. Твёрдое тело), в частности общей теоретической схемы, согласно которой состояние вещества при Н. т. может рассматриваться как суперпозиция идеально упорядоченного состояния, соответствующего 0 К, и газа элементарных возбуждений - квазичастиц (См. Квазичастицы). Введение различных типов квазичастиц (Фононы, дырки (См. Дырка), Магноны и др.) позволяет описать многообразие свойств веществ при Н. т. Термодинамические свойства газа элементарных возбуждений определяют наблюдаемые макроскопические равновесные свойства вещества. В свою очередь, методы статистической физики позволяют предсказать свойства газа возбуждений из характера связи энергии и импульса квазичастиц (закона дисперсии). Изучение теплоёмкости, теплопроводности и др. тепловых и кинетических свойств твёрдых тел при Н. т. даёт возможность установить закон дисперсии для фононов и др. квазичастиц. Температурная зависимость намагниченности ферро- и антиферромагнетиков объясняется в рамках закона дисперсии магнонов (спиновых волн (См. Спиновые волны)). Изучение закона дисперсии электронов в металлах составляет ещё один важный раздел физики Н. т. Ослабление тепловых колебаний решётки при гелиевых температурах и применение чистых веществ позволили выяснить особенности поведения электронов в металлах (см. Гальваномагнитные явления, Де Хааза - ван Альфена эффект, Циклотронный резонанс). Применение Н. т. играет большую роль при изучении различных видов магнитного резонанса (См. Магнитный резонанс).

Охлаждение до сверхнизких температур применяется в ядерной физике (См. Ядерная физика) для создания мишеней и источников с поляризованными ядрами при изучении анизотропии рассеяния элементарных частиц. Такие источники позволили, в частности, поставить решающие эксперименты по проблеме несохранения чётности (См. Чётность). Н. т. применяются при изучении полупроводников, оптических свойств молекулярных кристаллов и во многих др. случаях.

Технические приложения низких температур. Одна из главных областей применения Н. т. в технике - разделение газов. Производство кислорода и азота в больших количествах основано на сжижении воздуха с последующим разделением его в ректификационных колоннах на азот и кислород. Применение жидких кислорода и азота многообразно, в частности кислород служит окислителем в ракетном топливе. Н. т. используют для получения высокого Вакуума методом адсорбции на активированном угле или цеолите (Адсорбционный насос) или непосредственной конденсации на металлических стенках сосуда с хладоагентом (крионасос; рис. 2а, б). Высокий вакуум и охлаждение до Н. т. позволяют имитировать условия, характерные для космического пространства, и проводить испытания материалов и приборов в этих условиях. Охлаждение до температур жидкого воздуха или азота начало находить важные применения в медицине. Используя приборы, способные производить локальное замораживание тканей до Н. т., осуществляют оперативное лечение мозговых опухолей, урологических и др. заболеваний. Имеется также возможность длительного хранения живых тканей при Н. т.

Др. направление технических применений Н. т. связано с приложениями сверхпроводимости. Здесь наиболее важную роль играет создание сильных магнитных полей (См. Магнитное поле) (Низкие температуры 103 кэ), необходимых для ускорителей заряженных частиц, трековых приборов (См. Трековые приборы) (пузырьковых камер и др.), магнитогидродинамических генераторов и многообразных лабораторных исследований (см. Магнит сверхпроводящий). На основе явления сверхпроводящего туннелирования разработаны сверхпроводящие квантовые интерференционные устройства, способные измерять чрезвычайно слабые электрические напряжения (Низкие температуры 10-14 в), а также регистрировать очень малые изменения магнитного поля (Низкие температуры 10-11 э). Н. т. играют также большую роль в квантовой электронике (См. Квантовая электроника).

Лит.: Физика низких температур, пер. с англ. под общ. ред. А. И. Шальникова, М., 1959; Уайт Г. К., Экспериментальная техника в физике низких температур, пер. с англ., М., 1961; Земанский М., Температуры очень низкие и очень высокие, пер. с англ., М., 1968; Роуз-Инс А., Техника низкотемпературного эксперимента, пер. с англ., М., 1966; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971; Линтон Э., Сверхпроводимость, пер. с англ., 2 изд., М., 1971; Пегаков В. П., Свойства He3 и его растворов в He4, "Успехи физических наук", 1968, т. 94, в. 4, с. 607; Справочник по физикотехническим основам криогеники, под общ. ред. М. П. Малкова, 2 изд., М;, 1973; Progress in low temperature physics, ed. by C. J. Gorter, v. 6, Amst., 1970.

И. П. Крылов.

Рис. 1. а - схема, объясняющая действие рефрижератора растворения 3He в 4He: пары 3He откачиваются диффузионным насосом 1 и подаются затем ротационным насосом 2 к камере растворения 8, предварительно они охлаждаются в ванне с жидким азотом 3 и в ванне с жидким гелием 4. Перед капилляром 5 пары 3He конденсируются. Жидкий гелий 3He, дополнительно охлажденный в теплообменнике 7, поступает в камеру 8. Отсюда атомы диффундируют сквозь раствор 3He в 4He в камеру испарения 6, и цикл повторяется. Обозначения: Т - температура, р - давление, ν - концентрация 3He, ϑ - производительность системы откачки. б - основная низкотемпературная часть рефрижератора растворения: 1 и 2 - трубы откачки 3He и 4He; 3 - камера испарения; 4 - камера растворения; 5 - блоки теплообменников.

Рис. 2б - схема, объясняющая действие крионасоса: в корпусе 1 расположены тепловые экраны 2 и 3, имеющие температуру жидкого азота (77 К), они защищают от внешнего теплового воздействия резервуар 4 с жидким гелием. Пары гелия откачиваются через систему регулировки давления 5 насосом 6. За счёт этого температура в резервуаре 4 понижается и молекулы газов в рабочем объёме вымораживаются; 7 - насос, осуществляющий предварительное вакуумирование; 8 и 9 - датчики уровней жидких азота и гелия; 10 - электронная система автоматической регулировки и управления; 11 - внешняя оболочка, которая подогревается, чтобы прибор не покрывался инеем при работе.

Рис. 2а - внешний вид крионасоса и откачиваемого рабочего объёма: 1 - корпус крионасоса; 2 - рабочий объём; 3 - электронная система управления и регулировки; 4 - сосуд с жидким азотом и 5 - с жидким гелием.

Абсолютный нуль         
САМАЯ НИЗКАЯ ТЕМПЕРАТУРА
Абсолютный ноль; Абсолютный нуль; Абсолютный ноль температуры; Абсолютный ноль температур; Абсолютный нуль температур; −273,15 °C; Абсолютный 0

начало отсчёта абсолютной температуры; расположен на 273,16 К ниже температуры тройной точки (См. Тройная точка) воды (см. Температурные шкалы). Существование абсолютной температуры и А. н. следует из второго начала термодинамики (См. Второе начало термодинамики); из третьего начала термодинамики (См. Третье начало термодинамики) следует, что А. н. недостижим. С приближением температуры к А. н. стремятся к нулю тепловые характеристики вещества: Энтропия, Теплоёмкость, коэффициент теплового расширения. Резкое снижение интенсивности теплового движения атомов и молекул вблизи А. н. приводит к тому, что все вещества в этих условиях имеют упорядоченную кристаллическую структуру (исключение составляет жидкий Гелий). По представлениям классической физики при А. н. энергия теплового (хаотического) движения молекул и атомов вещества равна нулю. Согласно же квантовой механике (См. Квантовая механика), при А. н. атомы или молекулы, расположенные в узлах кристаллической решётки не находятся в полном покое, они совершают "нулевые" колебания и обладают т. н. нулевой энергией (См. Нулевая энергия). Если масса атомов и энергия взаимодействия между ними очень малы, нулевые колебания могут воспрепятствовать образованию кристаллической решётки. Это имеет место у изотопов гелия 3Не и 4He, которые остаются жидкими вплоть до самых низких достигнутых температур.

Получение температур, предельно приближающихся к А. Н., представляет сложную экспериментальную проблему (см. Низкие температуры), но уже получены температуры, лишь на миллионные доли градуса отстоящие от А. н.

АБСОЛЮТНЫЙ НУЛЬ         
САМАЯ НИЗКАЯ ТЕМПЕРАТУРА
Абсолютный ноль; Абсолютный нуль; Абсолютный ноль температуры; Абсолютный ноль температур; Абсолютный нуль температур; −273,15 °C; Абсолютный 0
температуры , начало отсчета температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16 °С ниже температуры тройной точки воды, для которой принято значение 0,01 °С. Абсолютный нуль принципиально недостижим (см. Нернста теорема).
АБСОЛЮТНЫЙ НУЛЬ         
САМАЯ НИЗКАЯ ТЕМПЕРАТУРА
Абсолютный ноль; Абсолютный нуль; Абсолютный ноль температуры; Абсолютный ноль температур; Абсолютный нуль температур; −273,15 °C; Абсолютный 0
начало отсчета абсолютной температуры. Соответствует -273,16. С. В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный нуль всего на несколько миллионных долей градуса, достичь же его, согласно законам термодинамики, невозможно.
При абсолютном нуле система находилась бы в состоянии с наименьшей возможной энергией (в этом состоянии атомы и молекулы совершали бы "нулевые" колебания) и обладала нулевой энтропией (нулевой неупорядоченностью). Объем идеального газа в точке абсолютного нуля должен быть равен нулю, и чтобы определить эту точку, измеряют объем реального газа гелия при последовательном понижении температуры вплоть до его ожижения при низком давлении (?268,9. С) и проводят экстраполяцию к температуре, при которой объем газа в отсутствие ожижения обратился бы в нуль.
Температура по абсолютной термодинамической шкале измеряется в кельвинах, обозначаемых символом К. Абсолютная термодинамическая шкала и шкала Цельсия просто смещены одна относительно другой и связаны соотношением К = ?C + 273,16?. См. также ТЕПЛОТА; ФИЗИКА НИЗКИХ ТЕМПЕРАТУР; ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН.

Википедия

Скачок Резеля

Скачок Резеля, или зелёный скачок (лат. Roeseliana roeselii), — вид кузнечиков, прямокрылых насекомых из семейства Tettigoniidae. Назван в честь немецкого энтомолога XVIII века Августа Иоганна Рёзеля фон Розенгофа. Небольшой, около 1,5—2 см в длину, буро-зелёный кузнечик с характерными светлой и двумя тёмными полосами на голове. Обычно с короткими крыльями и нелетающий, но иногда, особенно в популяциях с избыточной плотностью или при ухудшении факторов среды обитания, встречаются особи с длинными крыльями, более приспособленные к перемещению на новые подходящие для жизни места. Широко распространён и довольно обычен в Европе и на юге Сибири, завезён в Северную Америку, где активно осваивает новые пространства. Его протяжное звонкое стрекотание можно слышать среди звуков других поющих насекомых на лугах и полях с июля до середины осени. Питается в основном зелёными частями и семенами травянистых растений, но иногда поедает и более мелких насекомых, в том числе сельскохозяйственных вредителей, таких как тля и гусеницы озимой совки. В свою очередь скачки, как и другие кузнечики, служат пищей другим, более крупным насекомоядным животным. Размножаются скачки Резеля во второй половине лета и в начале осени, откладывая яйца в стебли травянистых растений. Зимуют только их яйца, из которых весной появляются личинки нового поколения. Внешне личинки похожи на взрослых кузнечиков, только меньше и бескрылые, в ходе своего развития они проходят 6 личиночных возрастов, пока в конце июня — июле, после последней линьки, не становятся взрослыми насекомыми. Типовой и самый распространённый вид своего рода, в котором выделяют 8 внешне очень похожих видов кузнечиков, различимых в основном только деталями морфологии.